解决方案
致力于电力电子、电气、机械传动、微电子与控制技术、工业自动化工程与节能技术改造的系统控制集成商
首页 > 解决方案 > 电力
电厂引风机节能改造方案

1.项目背景

发电厂既是电能的生产者,又是电能的用户和消费者,我国的发电能源构成中,火电占70%以上,而一般的火电机组,其厂用电一般占发电量的4%~7%,拖动大容量风机、水泵类辅机的高压厂用电动机的耗电量占厂用电的80%左右。由于电力体制改革中厂网分开、竞价上网等事物的出现,电厂的发电煤耗、厂用电率已成为发电厂考核的重要指标,直接关系到电厂的经济效益和企业竞争力。而风机、水泵类辅机的变速调节所起到的节能效果可显著地降低厂用电和发电成本,因此选择合适的高压厂用电动机调速系统成为电厂节能工作的当务之急。

2.改造方案

中电投某电厂对1×300MW机组的引风机进行高压变频调速改造,本次改造对机组一台电动机进行改造,采用一拖一自动隔离方式,引风机电动机可采用工、变频两种方式运行。选用Goodrive5000系列高压变频器,该变频器整流器件为二极管,逆变器件为IGBT(如图1所示),控制方式采用无速度传感器矢量控制,运行性能更加优越。

图1 功率单元原理图

变频器的6kV电源经变频装置输入刀闸与接触器后到高压变频装置,变频装置输出经出线刀闸和接触器送至电动机;6kV电源还可经旁路接触器直接起动电动机。进出线刀闸与接触器和旁路刀闸与接触器的作用是:一旦变频装置出现故障,即可马上断开进出线刀闸与接触器,将变频装置隔离,手动合旁路接触器,在工频电源下起动电机运行。旁路柜具备五防闭锁功能;具备工、变频方式指示功能;带电指示功能和带电闭锁柜门功能。系统改造一次回路如图2所示。

--为了充分保证系统的可靠性,给变频器同时加装工频旁路装置,变频器异常时,变频器停止运行,电机可以直接自动(工艺要求手动)切换到工频运行状态下运行,这样可以保证机组的正常安全运行。

--为了实现变频器故障的保护,变频器对6KV开关QF进行联锁,一旦变频器故障,变频器跳开QF。当工频旁路时,变频器始终允许QF合闸,撤消对QF的跳闸信号,使电机能正常通过QF合闸工频启动。

变频调速系统由用户开关、自动旁路柜、GD5000系列高压变频器、高压电机组成。旁路柜是由三个真空高压接触器KM1、KM2、KM3和高压隔离开关QS1、QS2组成。正常运行时QS1、QS2全部闭合,只有在检修时断开。电机以变频方式运行时,KM1、KM2闭合,QS3断开;电机以工频方式运行时,KM3闭合,KM1、KM2断开。变频与工频之间切换自动/手动完成。旁路柜严格按照“五防”联锁要求设计,变频输出开关KM2和工频开关KM3互锁,完全能够保证变频调速系统安全运行。

由于在整个变频调速系统中前级用户开关柜具有过载保护装置,因而手动旁路柜不会对电机进行过载保护。同时用户开关柜必须按照8-10倍额定电流设置速断保护值,确保躲过激磁涌流。

图2 改造后的一次回路图

3.方案效果

为了便于分析变频改造后的节能情况,选取在1号机组分别带150MW、300MW负荷的两种种不同工况下对引风机工频和变频两种运行方式下的参数情况进行了对比。节能效果参见表1,从表1可以看出,当机组负荷分别为150MW、300 MW时,引风机变频运行比工频运行每小时分别节电256kW·h、535kW·h。变频改造后,节电效果显著。

表1 节能效果对比

参数名称 测量与计算结果
机组负荷(MW) 150 300
工频运行状态 平均电流(A) 145 286
用电量(kW.h) 1356 2674
变频运行状态 平均电流(A) 110 214
用电量(kW.h) 1100 2139
节电效果(%) 19% 20%

4.总结

引风机经过变频改造以后,节能效果非常明显,而且启动频率低,转速低,电流小且平稳。实现了软启动,避免了以前用工频启动时的大电流大转矩对电机、电缆、开关及机械设备的冲击。不仅延长了电机等设备的寿命,也减轻了轴承的磨损,提高了安全供电的可靠性。

参考文献:

[1]深圳市英威腾电气股份有限公司 《Goodrive5000系列高压变频器产品说明书》

[2]黄威、 黄禹 《变频器的节能与改造》化学工业出版社2011-03出版

© 2016-2018 武汉科莱特变频自控技术有限公司 版权所有 / 工信部备案:鄂ICP备18017844号-1